Hamiltonian formalism of two-dimensional Vlasov kinetic equation.

نویسنده

  • Maxim V Pavlov
چکیده

In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional Russo-Smereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with the hydrodynamic lattice of moments derived by D. J. Benney is constructed. A relationship between this hydrodynamic lattice of moments and the two-dimensional Vlasov kinetic equation is found. In the two-dimensional case, a Hamiltonian hydrodynamic lattice for the Russo-Smereka kinetic model is constructed. Simple hydrodynamic reductions are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hamiltonian Formalism for Solving the Vlasov-poisson Equations and Its Application to the Coherent Beam-beam Interaction

A Hamiltonian approach to the solution of the VlasovPoisson equations has been developed. Based on a nonlinear canonical transformation, the rapidly oscillating terms in the original Hamiltonian are transformed away, yielding a new Hamiltonian that contains slowly varying terms only. The formalism has been applied to the coherent beam-beam interaction, and a stationary solution to the transform...

متن کامل

Hamiltonian closures for fluid models with four moments by dimensional analysis

Fluid reductions of the Vlasov–Ampère equations that preserve the Hamiltonian structure of the parent kinetic model are investigated. Hamiltonian closures using the first four moments of the Vlasov distribution are obtained, and all closures provided by a dimensional analysis procedure for satisfying the Jacobi identity are found. Two Hamiltonian models emerge, for which the explicit closures a...

متن کامل

Energy-Casimir stability of hybrid Vlasov-MHD models

Different variants of hybrid kinetic-fluid models are considered for describing the interaction of a bulk fluid plasma obeying magnetohydrodynamics (MHD) and an energetic component obeying a kinetic theory. Upon using the Vlasov kinetic theory for energetic particles, two planar Vlasov-MHD models are compared in terms of their stability properties. This is made possible by the Hamiltonian struc...

متن کامل

Uniformization of Nonlinear Hamiltonian Systems of Vlasov and Hartree Type

Nonlinear Hamiltonian systems describing the abstract Vlasov and Hartree equations are considered in the framework of algebraic Poissonian theory. The concept of uniformization is introduced; it generalizes the method of second quantization of classical systems to arbitrary Hamiltonian (Lie-Jordan, or Poissonian) algebras, in particular to the algebras of operators in indefinite spaces. A funct...

متن کامل

Hamiltonian and Brownian systems with long-range interactions: III. The growth of correlations from the BBGKY hierarchy

We discuss the growth of correlations in systems with weak long-range interactions. Starting from the BBGKY hierarchy, we determine the evolution of the two-body correlation function by using an expansion of the solutions of the hierarchy in powers of 1/N in a proper thermodynamic limit N → +∞. These correlations are responsible for the “collisional” evolution of the system beyond the Vlasov re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings. Mathematical, physical, and engineering sciences

دوره 470 2172  شماره 

صفحات  -

تاریخ انتشار 2014